[BioNLP] New paper on extraction of semantically enriched events from biomedical literature

Paul Thompson Paul.Thompson at manchester.ac.uk
Mon May 28 09:46:56 EDT 2012


Extracting semantically enriched events from biomedical literature

Makoto Miwa, Paul Thompson, John McNaught, Douglas B Kell and Sophia Ananiadou

BMC Bioinformatics 2012, 13:108

http://www.biomedcentral.com/1471-2105/13/108/

Abstract
========

Background:

Research into event-based text mining from the biomedical literature has been growing in popularity to facilitate the development of advanced biomedical text mining systems. Such technology permits advanced search, which goes beyond document or sentence-based retrieval. However, existing event-based systems typically ignore additional information within the textual context of events that can determine, amongst other things, whether an event represents a fact, hypothesis, experimental result or analysis of results,    whether it describes new or previously reported knowledge, and whether it is speculated or negated. We refer to such contextual information as meta-knowledge. The automatic recognition of such information can permit the training of systems allowing finer-grained searching of events according to the meta-knowledge that is associated with them.

Results:

Based on a corpus of 1,000 MEDLINE abstracts, fully manually annotated with both events and associated meta-knowledge, we have constructed a machine learning-based system that automatically assigns meta-knowledge information to events. This system has been integrated into EventMine, a state-of-the-art event extraction system, in order to create a more advanced system (EventMine-MK) that not only extracts events from text automatically, but also assigns five different types of meta-knowledge to these events. The meta-knowledge assignment module of EventMine-MK performs with macro-averaged F-scores in the range of 57-87% on the BioNLP'09 Shared Task corpus. EventMine-MK has been evaluated on the BioNLP'09 Shared Task subtask of detecting negated and speculated events. Our results show that EventMine-MK can outperform other state-of-the-art systems that participated in this task.

Conclusion:

We have constructed the first practical system that extracts both events and associated, detailed meta-knowledge information from biomedical literature. The automatically assigned meta-knowledge information can be used to refine search systems, in order to provide an extra search layer beyond entities and assertions, dealing with phenomena such as rhetorical intent, speculations, contradictions and negations. This finer grained search functionality can assist in several important tasks, e.g., database curation (by locating new experimental knowledge) and pathway enrichment (by providing information for inference). To allow easy integration into text mining systems, EventMine-MK is provided as a UIMA component that can be used in the interoperable text mining infrastructure, U-Compare.


--------

Paul Thompson
Research Associate
School of Computer Science
National Centre for Text Mining
Manchester Interdisciplinary Biocentre
University of Manchester
131 Princess Street
Manchester
M1 7DN
UK
Tel: 0161 306 3091
http://personalpages.manchester.ac.uk/staff/Paul.Thompson/






-------------- next part --------------
HTML attachment scrubbed and removed


More information about the BioNLP mailing list